

CO₂ reduction potentials of alternative fuels – Energy research at KIT

Witold-Roger Poganietz

Institute of Technology Assessment and Systems Analysis (ITAS)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

KIT Energy Center

& KIT Focus Mobility systems: Efficient use of energy in transportation

- Biomass based energy
 - (synthetic) fuels e.g. bioliq®
 - hydrogen
 - hydrothermal gasification of wet biomass
 - microalgae

bioliq®

Aim: Producing customized fuels from residual biomass

Concept

Source: KIT 2010

bioliq®

Pilot plant: Status quo

	Phase 1	Phase 2	Phase 3	Phase 4
Process	Flash pyrolysis	High pressure gasification	Gas cleaning + Synthesis I	Synthesis II
Product	BioSyncrude®	Synthesis gas	DME	Synthetic fuel
Capacity	2 MW (500kg/h)	5 MW (1t/h)	150 kg/h	100 l/h
Realization	2008	2011	2011	2011
Partner	Lurgi GmbH		Chemieanlagenbau Chemnitz CAC Mut Advanced Heating GmbH	

Source: Dinjius et al. 2010

Expectations

- 2013: Full operational capability of the pilot plant
- 2015: Market entry of bioliq®

	bioliq® or comparable processes*)	References	Source/Note
Global warming potential	Residual wood: ~ -10 kg CO ₂ eq/ GJ	Diesel: ~ 95 kg CO ₂ eq/ GJ	Kercondueff 2008 Incl. credits
Costs of reducing CO ₂ eq	Straw: 250-350 €/ Mg CO ₂ eq	Ethanol (Wheat): 275-1.700 €/ Mg CO ₂ eq	Leible 2008; Thrän et al. 2010
Production costs	0.95 -1.10 €/I BtL-fuel		Leible 2008

*) Underlying process designs differ within the column. Figures could vary due to underlying process design, plant size, and biomass input!

Hydrogen from microalgae

Versatile use of microalgae

Source: Rösch et al. 2008

- CO₂ intake
- High PCE (up to 5-10(?)% currently < 2 %) with a wide range of (potential) yields:
 - 20-100 Mg DM/ha (open raceway ponds \rightarrow flat panels)
 - C3 plants and C4 plants: 8-30 Mg DM/ha

PCE = Photoconversion efficiency

Hydrogen from Microalgae – HydroMicPro

The HydroMicPro project is focused on the development of an affordable, highly efficient production process with optimized biology and process technology in order to create the prerequisites for the production of large amounts of hydrogen (C. Posten, KIT)

- Partners: KIT (Institut f
 ür Bio- und Lebensmitteltechnik, Engler-Bunte-Institut), Ehrfeld Mikrotechnik BTS GmbH Wendelsheim, Institut f
 ür Getreideverarbeitung GmbH Nuthetal, Max-Planck-Institut f
 ür molekulare Pflanzenphysiologie Potsdam, OHB-System AG Bremen, Universit
 ät Bielefeld
- Client: BMBF
- Project term: 01.10.2009 30.09.2012

Microalgae – HydroMicPro

Concept

Source: ATZonline (2009)

Microalgae – Opportunities & Challenges

Capturing and recycling of CO₂ – soundness under review

Source: news.net.com (2008)

Carbon Algae Recycling System (CARS)

- Conversion of algal biomass into energy
 - still not energy efficient:
 - 2.5 MJ energy input per 1 MJ energy output o/w 1.5 MJ operating of photobioreactor (Weiss 2010)
- Development of an hydrogen economy

Concluding remarks

- Environment Greenhouse gas emissions
 - bioliq®
 - Noteworthy reduction of carbon dioxide emissions
 - Carbon reduction costs are not inacceptable high – compared to other biofuels
 - Microalgae
 - Still energy inefficient
 - Soundness of carbon capturing concepts are under review
- Considered market implementation
 - bioliq®: 2015
 - Microalgae:
 - Hydrogen: > 2020
 - Biodiesel: < 2020(?)</p>

poganietz@kit.edu